How to Express C++ Concepts in Fortran90

Viktor K. Decyk

Department of Physics and Astronomy
University of California, Los Angeles
Los Angeles, CA 90095-1547
&

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91109-8099

email: decyk@physics.ucla.edu

Charles D. Norton

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91109-8099

email: nortonc@olympic.jpl.nasa.gov

Boleslaw K. Szymanski

Department of Computer Science
and
Scientific Computation Research Center (SCOREC)
Rensselaer Polytechnic Institute
Troy, NY 12180-3590

email: szymansk@cs.rpi.edu

Abstract

This paper summarizes techniques for emulating in Fortran90 the most important
object-oriented concepts of C++: classes (including abstract data types, encapsulation
and function overloading), inheritance and dynamic dispatching.

1

ASK :Emnnt.u” Sch\\dcbunc)\,,
_obock Bl o

l. Introduction

Object-Oriented Programming (OOP) has proven to be a useful programming
paradigm for complex programs, especially those modeling “real world problems.”
The scientific community has been slower to adopt this paradigm, but even here OOP
is beginning to draw a following and even more curious interest. There are a number
of reasons for this reticence in the scientific community. One reason is that many
scientists who write modest-sized programs for their own needs, are comfortable using
Fortran77 and C, and see no reason to change. Others with more complex programs
written in Fortran have a great deal invested in their legacy codes and do not want to
switch to a new programming language because of the threat to this investment.
Adopting OOP means not only learning a whole programming style, but learning a
new and unfamiliar language as well. The dominant OO language in the scientific
community, C++, is very complex and requires a substantial investment of time to learn
how to use effectively. In using C++, there are also concerns about reported goor,)
performance, lack of language and compiler standardization, and lack of standard™
class libraries for scientific computing. Although many of these concerns are being
addressed by the C++ community, the scientific programmer may not know how to
evaluate the current situation. Finally, many people have no clear idea of how their
scientific productivity will improve by using OOP.

Fortran90 is a modern programming language with many new features which
appear to be useful for OOP. Since it is known that OOP is possible in non-OOP
languages [1], we decided to test the capabilities of Fortran90 by translating published
examples of C++ code from textbooks and journal articles. We discovered that almost
all the features of C++ could either be translated directly or emulated without great
effort. The major exception was dynamic binding, emulation of which required more
effort. As a result, we feel that it is practical to adopt OOP principles in Fortran90.
Since Fortran90 is backward compatible with Fortran77, this gives a migration path for
evolving toward a new programming style in an incremental fashion.

This paper summarizes the techniques we have developed for implementing C++
concepts in Fortran90. It is assumed that the reader is familiar with C++ but not
necessarily with Fortran90. For readers unfamiliar with C++, there are many textbooks
available. One that we have found useful is Lippman’s [2]. For a more extensive
explanation of Fortran90, we recommend the book by Ellis et. al. [3] For those who are
not familiar with either C++ or Fortran90, we recommend our earlier introductory article
[4]). We shall illustrate many of our ideas by using the extended example of a database
application which is described by Henderson and Zorn [5] and is used as a benchmark
for object-oriented languages. For pedagogical reasons, we have simplified and
slightly modified their original code.

Il. Classes

The most fundamental concept in C++ which must be modeled is the idea of
classes. Classes contain a new data type and the procedures that can be performed
by the class. The elements (or components) of the data type are the class data
members, and the procedures are the class member functions (or methods). We
define a class in Fortran90 as a module which contains exactly one abstract data type
definition (called a derived type in Fortran90) and the procedures which work
exclusively on that type. In addition, a module can also contain data which
corresponds to static class members in C++. As an example, consider the Personnel
class from Henderson and Zorn’s application. A primitive Personnel class can be
defined as follows:

module Personnel class
type Personnel
integer :: ssn
character*12 :: firstname, lastname
end type Personnel
contains
subroutine null Personnel (this)
! Personnel constructor

type (Personnel), intent (out) :: this
this%ssn = 0
this%firstname = ! ! blank name

this%lastname = ' ‘
end subroutine null Personnel
end module Personnel class

The class data type contains three data members, an integer identifier called ssn and
two character variables called firstname and lastname. In addition, this class
contains one procedure, a simple constructor, which initializes the component ssn to
zero and sets the character variables to blank. Since a module name cannot be the
same as the derived type name in Fortran90, by convention we append the string

“ class” to the type name to obtain the module name. Fortran90 is not case sensitive
as is C++, but we will use mixed case for textual clarity. Comments are preceded by
the ‘!’ character rather than the ‘//’ string used in C++. Fortran90 also allows free
format, but we will continue to use fixed format here. A simple main program which
uses this Personnel class is shown below:

program personnel test

use Personnel class

type (Personnel) :: person
call null Personnel (person)
end program personnel test

The USE statement is a scope operator which brings the class into the scope of the
main program. Forward declarations are not needed for procedures in modules in
Fortran90 (they are generated automatically), and there is no notion of file scope. (An

3

INTERFACE statement is available to provide the functionality of forward declarations
for procedures not in modules.) An object of this class (person) is created in two
steps. First a variable of this type is declared and created (but not initialized), then a
constructor procedure is applied to initialize the object:

type (Personnel) :: person
call null Personnel (person)

This is different than in C++, where both creation and initialization can be combined
into one statement with the new operator. (Fortran90 also requires that all declarations
appear before any executable statements.) In the procedure null Personnel, note
that a reference to the class object always appears explicitly as an argument in
Fortran90, and by convention we make it the first argument and call it ‘this.’ In C++, a
reference to the object is available, but is not explicitly declared. Furthermore, the
class data members are accessed as components of the dummy ‘this’ argument.
Fortran80 uses the ‘%’ notation to refer to components of a type where C++ uses the ‘.’
notation to refer to components of a structure. Thus in a Fortran90 procedure one
writes:

this%ssn = 0

whereas in C++, one would merely write:
ssn = 0;

Fortran90 has two ways to represent strings. The most common way is to use
variables of type CHARACTER, which are declared as follows:

character*12 :: firstname

Here the variable firstname is declared to be 12 bytes in length. Character
variables are actually encapsulated objects which know their own length. They are
not null-terminated as in C++. The length cannot be set dynamically, but must be
known at compile time. A substantial number of intrinsic operators are available for ~
character manipulations in Fortran90. emg@\"“‘\)
nhar his nmmve Personnel clasg/so that it actually doeg'/
\ JINT DY BW constructor init Personnel to
initialize the object with actual mformatlon as follows:

subroutine init_ Personnel (this, s, fn, 1n)
type (Personnel), intent (out) :: this
integer, intent (in) :: s
character* (*), intent (in) :: fn, 1ln
this%ssn = s '
this%$firstname = fn

this%lastname = 1ln

end subroutine init Personnel

4

Later we will show how to overload functions so that both constructors have a common
name. In this new constructor, the INTENT(IN) attribute on the argument s means that
it will not be modified, and therefore corresponds to the const keyword used in
dummy arguments in C++. There appears to be no counterpart in C++ to the
INTENT(OUT) attribute except for the return value of a function. When passed as a
dummy argument to a procedure, the length of a character variable does not have to
be declared (but can be determined with the LEN intrinsic, similar to the strlen library
function in C++). Now, one can initialize person as follows:

type (Personnel) :: person :
call init Personnel (person, 1, 'PAUL', 'JONES')

Fortran character variables function as a built-in string class and are widely used
for this purpose. They have a disadvantage, however, in that the strings are always of
fixed length, so that memory can be wasted. As an alternative, it is possible to
construct C-style strings as an allocatable array of characters, such as:

character*1l, dimension(:), allocatable :: firstname

The memory for such an array can be dynamically allocated using the ALLOCATE
statement (rather than the new statement used in C++), as follows:

allocate (firstname (len (‘*PAUL’)))

where we have allocated an array of 1 byte characters equal in size to the length of the
string ‘PAUL’. (Arrays of n byte characters can also be allocated in a similar way.) The
memory for such arrays is freed with the DEALLOCATE statement (rather than
delete), as follows:

deallocate (firstname)

C-style strings are not commonly used in Fortran90 because not all of the Fortran
string manipulation intrinsics are available. For example, string assignment with C-
style strings must be done using array constructors:

firstname = (/'P’,’A’,'U’','L’/)
instead of what one would normally do with character variables:

firstname = ‘PAUL’
Since Henderson and Zorn use C-style strings in their example, however, we will do
so here as well. In order to make string assignment simpler, we will write a copy

procedure (which we shall call strcpy) which will convert a character variable of fixed
size to a C-style array of 1 byte characters:

5

subroutine strcpy(s,c)
character, dimension (:), intent (out) :: s
character* (*), intent (in) :: c
do i =1, max(size(s),len(c))
s(i) = c(i:1)
enddo
end subroutine strcpy

Here we have used the SIZE intrinsic to determine the length of the character array s
and the LEN intrinsic to determine the length of the character variable c.

With this procedure, one can use dynamically allocated arrays of characters while
still retaining a simple assignment syntax:

call strcpy (firstname, 'PAUL’)

Aliocatable arrays cannot be used in derived type definitions (i.e., as class data
members), so pointers to arrays must be used instead. Pointers in Fortran90 are
objects whose internal state is private. Arrays and pointers to arrays have the same
syntax and pointers to arrays can be used whenever arrays are expected, including
passing them to procedures. This is quite natural in Fortran90, since arrays are
always passed by reference. Thus the expression:

ptr(3) = 4

will either set the third word of the array ptr to 4, if ptr is an array, or else it will
dereference the corresponding location in memory, if ptr is a pointer to an array. Note
that Fortran90 arrays are referenced by default starting from 1 rather than 0, although
this default can be changed. In C++, these two cases have different syntax, where
elements of an array are set with the bracket notation:

ptr(2] = 4;
while the following expression:
*(ptr + 2) = 4;

will dereference a pointer to an array.
Adding a constructor and destructor to our class, we can extend our class definition
as follows: '

module Personnel class
! define Personnel type
type Personnel
integer :: ssn
character, dimension(:), pointer :: firstname, lastname
end type Personnel
contains
subroutine init Personnel (this, s, fn, 1n)
! Personnel constructor
type (Personnel), intent (out) :: this
integer, intent (in) :: s
character* (*), intent (in) :: fn, 1ln
this%ssn = s
allocate(this%firstname (len(fn)),this%$lastname (len(ln)))
call strcpy(this%firstname, fn)
call strcpy(this%lastname, 1ln)
end subroutine init Personnel
!
subroutine term Personnel (this)
! Personnel destructor
type (Personnel), intent (inout) :: this
deallocate (this%$firstname, this%$lastname)
end subroutine term Personnel

subroutine strcpy(s,c)
character, dimension (:), intent (out) :: s
character* (*), intent (in) :: c
do i = 1, max(size(s),len(c))
s(i) = c(i:1)
enddo
end subroutine strcpy
end module Personnel class

For convenience, we have put the st rcpy function in this module. If we were
going to do a lot of string manipulations using C-style strings, one would create a
string class to do so. To keep the example simple, however, we will not do so here.

One can also overload procedure names for functions in modules with the
INTERFACE statement. This allows one to use the same name for different
procedures. For example, we can overload the name new and equate it to the
constructor names null_ Personnel and init_Personnel, with the following
statements in the module before the CONTAINS statement:

interface new
module procedure null Personnel, init Personnel
end interface

In Fortran90 overloading procedure names requires two steps, whereas in C++ this
can be done with one step by merely reusing a procedure name with different
argument types. Similarly, one can overload the name delete and equate it to
term_Personnel. Asin C++, overloading is possible only if the arguments of the

7

procedure are distinct. In Fortran90, however, the object is an argument and is
therefore also taken into account in resolving overloaded functions, whereas in C++, a
different mechanism (polymorphism) is used to overload procedure names which refer
to objects in different classes. Constructors and destructors must always be called
explicitly in Fortran90, but they are not needed as often as in C++ because Fortran90
always passes arguments by reference, not by value. Destructors are generally
needed only if the class contains pointers which must be deallocated. With the current
definition of the Personnel class, initializing and deleting an object looks like:

type (Personnel) :: person
call new(person,l, 'PAUL', 'JONES')
call delete (person)

This basic Personnel class can be further enhanced with additional features
similar to those available in C++. First of all, one can add the PRIVATE attribute to the
type definition as follows:

type Personnel

private
integer :: ssn
character, dimension(:), pointer :: firstname, lastname

end type Personnel

This functions just like the private keyword in C++ and makes the components of
type Personnel available only to member functions in the module (class). The default
is PUBLIC. The protected keyword is not available in Fortran90. It is also not
possible in Fortran90 to make some data members of Personnel PUBLIC while
keeping others PRIVATE.

Procedure names and type definitions in modules can also be made PUBLIC or
PRIVATE. By default, they are PUBLIC. For example, the following statement will
make the names init_Personnel and term Personnel PRIVATE.

private :: init Personnel, term Personnel

Fortran has default declarations for variables. One can require all variables to be
declared as in C++ with the IMPLICIT NONE statement.

Let us add a procedure to this class to print a copy of the Personnel record,
omitting the identifier ssn by default. Such a procedure might look like:

subroutine print Personnel (this,printssn)

type (Personnel), intent (in) :: this
logical, optional, intent (in) :: printssn
if ((present (printssn)) .and.printssn) then
Print *,this%ssn,': ',this%firstname,' ',this%lastname
else
Print *, this%firstname, ' ', this%lastname
endif

end subroutine print_ Personnel

8

Fortran90 does not have default values for arguments, but OPTIONAL arguments can
be used for this purpose. The OPTIONAL variable printssn here is of type LOGICAL
which is an object whose internal representation is private. There is no automatic
conversion between logical types and other types in Fortran90. (In fact, there are no
automatic casts permitted across procedures in Fortran90 at all.) The identifier ssn
will be printed if the LOGICAL printssn is both PRESENT and true. Fortran90 uses
the logical operator .AND. where C++ uses &&. The PRINT * statement will print on
the default output device with default formatting. Note that the PRINT statement is
dereferencing the entire arrays pointed to by this$firstname and this%lastname.

Another useful procedure one can add to this class is extracting the Personnel
identifier ssn:

function getssn_Personnel (this) result (ssn)
type (Personnel), intent (in) :: this
integer :: ssn

ssn = this%ssn

end function getssn Personnel

In Fortran90, the specification RESULT can be used to identify the name of the function
result variable, while C++ uses the keyword return to identify a result expression. If
we overload the name print to refer to print_Personnel, then the following code
extract will initialize a Personnel record and print it along with the identifier:

type (Personnel) :: person
call new (person,l, 'PAUL', 'JONES')
call print (person, .true.)

Note that in Fortran90, we invoke a method on an object with the syntax:

call print (person, .true.)

whereas in C++, the ‘.’ syntax would have been used:

person.print (1) ;

Another useful addition to this class is the ability to determine how many
Personnel records have been created. . One way to accomplish this is to add a static
class member called NUM_FILES to keep track of the number of records. This can be
done in Fortran90 by placing the declaration:

integer, save :: NUM.FILES = 0

anywhere before the CONTAINS statement. Variables inside modules function as
global variables for the module. They are in scope whenever the class is in scope
(that is, when the module name is declared in a USE statement). Here the SAVE
attribute is equivalent to.the keyword staticin C++. Static class members can be
initialized inside the class definition, which is not generally allowed in C++. One can

9

keep track of the current number of records by incrementing the global variable

NUM FILES inside the procedure new, and decrementmg itin the procedure delete.
There is no notion of a class scope operator in Fortran90. Scope is controlled by

the USE statement, and procedure names either must be unique, or overloaded with

the INTERFACE statement. If there is a variable name conflict, one can rename the

variable when the Personnel classis “used.” In the following example:

use Personnel class, local NUM FILES name => NUM FILES
Print *,local] _NUM FILES name

the name local NUM FILES name is now used to refer to the static class member
NUM FILES. Alternatively, it is possible to make static class members PRIVATE by
adding the PRIVATE attribute to the declaration.

integer, save, private :: NUM FILES = 0

In that case one must provide a static member function without a ‘this’ reference
to read the value of NUM_FILES, for example:

integer function get num files()
get num files = NUM FILES
end function get num files

Here no RESULT specification is used and therefore the function name is used as the
result variable.

The final version of the Personnel class is listed in Appendix A. Both the
Fortran90 and C++ versions are shown for comparison. The following program will
create a record, print out a copy without the identifier, delete it, and finally print out the
number of existing records (which should be 0 at this point of execution).

program personnel test

use Personnel class

type (Personnel) :: person

call new(person,l, 'PAUL', 'JONES')
call print (person)

call delete (person)

Print *,'NUM FILES=',get num files()
end program personnel test

10

II1. Inheritance

Another important concept in C++ which must be modeled to support object-
orientedness is the idea of inheritance. Inheritance allows one to create a hierarchy of
classes in which the base class contains the common properties of the hierarchy and
the derived classes can modify and specialize these properties. Specifically, a derived
class contains all the class data members of the base class and can add new ones.
Further, a derived class contains all the class member functions of the base class, and
can modify them or add new ones. As an example, Henderson and Zorn define
student records as a type of personnel record through inheritance from personnel.
Fortran90 does not directly support this kind of inheritance, but an equivalent
relationship can be constructed. Inheritance of class data members is constructed by
explicitly including a base class data type in the definition of the derived class data
type. For example, if Student is derived from Personnel, the Student type can be
expressed as follows:

type Student

type (Personnel) :: personnel

integer :: nclasses

character*12, dimension (10) :: classes
end type Student

The student type here contains exactly one component of type Personnel, as well
as two additional members needed to describe student records, an integer nclasses
which contains the number of classes a student is enrolled in, and an array of 10 fixed
length characters called classes for the names of those classes. In C++, the
component corresponding to type Personnel is implicit and would not be declared.

To initialize the Student type, one can call the constructor for Personnel to
initialize the Personnel component of Student and initialize the other components
by direct assignment, as follows:

type (Student) :: studentA
call new(studentA%personnel, (0, 'PAT', 'SMITH')
studentA%nclasses = 0

These operations can be incorporated into a Student constructor procedure:

subroutine init_ Student (this, s, fn, 1n)
! Student class constructor

type (Student), intent (out) :: this

integer, intent (in) :: s

character* (*), intent (in) :: fn, 1ln

call new(this%personnel, s, fn, 1n)

this%nclasses = 0

end subroutine init_Student

which emulates the initialization list which occurs in C++. In a similar fashion, the

11

Personnel component of Student can be deleted by applying the Personnel
destructor:

call delete (this%personnel)

A student destructor can be written to execute this operation. In C++, a destructor
which deletes only the inherited data member of a derived class does not have to be
explicitly created.

Thus a primitive student class which builds upon the Personnel class can be
constructed as follows:

module Student class
! bring Personnel class into scope

use Personnel class

private :: init Student, term Student
! define Student type -

type Student

type (Personnel) :: personnel
integer :: nclasses
character*12, dimension (10) :: classes

end type Student
interface new
module procedure init_Student
end interface
interface delete
module procedure term Student
end interface
contains
subroutine init Student (this, s, fn, 1n)
! Student class constructor

type (Student), intent (out) :: this
integer, intent (in) :: s
character* (*), intent (in) :: fn, 1ln

call new(this%personnel, s, fn, 1n)
this%nclasses = 0
end subroutine init Student
!
subroutine term Student (this)
! Student class destructor
type (Student), intent (inout) :: this
call delete (this%$personnel)
end subroutine term Student
end module Student_class

Here the USE PERSONNEL_CLASS statement plays the role of the class derivation
list in C++. We have also overloaded the names new and delete so that they execute
the Student constructor and destructor if the argument is of type Student. With this
incomplete class one can create and destroy a Student record as follows:

12

program student test

use Student_class

type (Student) :: studentA

call new(studentA, 0, 'PAT', 'SMITH')
call delete (studentA)

end program student test

:Inheritance of methods is constructed by having the derived class procedure
delegate to the base class. This is a common approach in C++ when methods have to
be modified, but in Fortran90 it is required even when methods are not modified. For
example, to print a Student record, one would delegate to the Personnel class the
responsibility for printing out the Personnel component of Student, as follows:

call print (studentA%personnel)

In C++, one would have to use the scope operator:
Personnel::studentA.print;

If the print procedure for a Student is modified to also print out the enroliment
record, this delegation is incorporated into the modified procedure, just as in C++. The
following is an example of such a modified procedure:

subroutine print_Student (this, printssn)
type (Student), intent (in) :: this
logical, optional, intent (in) :: printssn
integer :: i

! delegate printing of personnel component
call print (this%personnel,printssn)

! print enrollment record
if (this%nclasses==0) then

Print *,'-- Not Enrolled’
else
Print *,'~- Enrolled’

do i = 1, this%nclasses
write (6,'(a)',advance="no') this%classes (i)
enddo
Print *
endif
end subroutine print Student

The PRINT * statement we encountered before will always append a newline
character to the output. To suppress this, one must use the ADVANCE='"NO’ specifier
in the WRITE statement, which also requires a format specification (‘a’). This is the
opposite situation to C++, where the iostream cout requires the manipulator endl in
order to insert a newline character. Finally, if we overload the name print with the
INTERFACE statement to include the print_Student procedure, the name print will
execute the correct procedure for Student objects.

Since the print function in the base class was modified for the derived class, the

13

process of creating the modified version is similar to what one might do in C++.
However, for functions not modified in the derived class, nothing needs to be done in
C++, whereas in Fortran90 one needs to write a procedure which delegates to the
base class the responsibility for carrying out the procedure on behalf of the derived
class. For example, the procedure getssn_Student needs to be created in Fortran90
which would not have to be created in C++:

integer function getssn Student (this)

type (Student), intent (in) :: this
getssn_Student = getssn_Personnel (this$personnel)
end function getssn Student

If the components of Personnel had been PUBLIC, one could have accessed the
identifier directly instead of using the getssn_Personnel procedure, as follows:

getssn_Student = this%personnel%ssn

In order for the student class to be useful, we create a procedure to add a class to the
student’s file:

subroutine addclass(this, c)

! Add a class to a student file
type (Student), intent (inout) :: this
character* (*), intent (in) :: c
this%nclasses = this%nclasses + 1
this%classes (this%$nclasses) = c
end subroutine addclass

In this procedure, the class data member nclasses is incremented, and the name of
the class (contained in the argument c) is added to the next element of the array
classes. The following main program tests this class:

program student test
use Student class .
! create a record
type (Student) :: studentA
call new(studentA, 0, 'PAT', 'SMITH')
call addclass(studentA, '"MATH'")
! print a record
call print (studentA, .true.)
end program student test

and produces the following output:

0 : PAT SMITH
-— Enrolled
MATH

14

What we have constructed here is an inheritance hierarchy which does not contain
virtual functions. We have a written a new class which contains the data of the base
class and all the procedures of the base class have been extended to work with the
new derived class. INTERFACE statements have to be used to give the procedure
uniform names. What is missing here is dynamic dispatching (or run-time
polymorphism), which will be discussed in the next section.

As before, it is simpler to make the student data member classes an array of
character variables of fixed size. It is possible, however, to make this an allocatable
array of pointers to C-style character arrays as Henderson and Zorn do, but one must
do so indirectly. In Fortran90, a pointer is actually an attribute and not a data type, so it
is impossible to create an array of pointers directly. Instead, one creates a derived
type which contains a pointer and then creates an array of that derived type. Thus we
can create a type called String as follows:

type, private :: String
character*l, dimension(:), pointer :: stringptr
end type String

And then redefine the student type to contain an array of Strings:

type Student

type (Personnel) :: personnel
integer :: nclasses
type (String), dimension (10) :; classes

end type Student

If studentA’ s first class is math, one can allocate memory and assign the classes
‘data member, as follows:

allocate (studentA%classes (1) $stringptr (len (*MATH')))
call strcpy(studentA%classes(l)$%stringptr,’MATH')

To use such an array of pointers, a similar allocation and assignment must be added to
the addclass procedure. Similarly, a do loop must be added to the destructor for the
class to allow deallocation of memory:

do i = 1, studentA%nclasses
deallocate (studentA%classes (i) $stringptr)
enddo

As in C++, it is possible to hide some of the(g y details of C-style string
manipulation by creating a special string classTmFortran90. The final version of the
Student class which uses an array of pointers is listed in Appendix B.

Objects of the Personnel class were not intended to be created. The usual way to
enforce this in C++ is to make Personnel an abstract base class. Henderson and
Zorn did not do so because they wanted to implement methods common to the
hierarchy in this class. An alternative way to enforce this in C++ is to make the

15

Personnel constructor protected. The protected keyword is not available in
Fortran90, but its effect can be partially emulated by declaring PUBLIC the name
Personnel (rather than the constructor) in the Personnel class, but then declaring it
PRIVATE in a derived class such as student. Then any program which “uses” the
Student class will not have access to the Personnel type. However, the emulation is
incomplete, since a program unit which “uses” the Personnel class directly will have
access to the Personnel type.

In a similar manner to the Student class, one can derive another class from
Personnel, called Teacher. The Teacher type will contain a new member called

salary:

type Teacher

private
type (Personnel) :: personnel
integer :: salary

end type Teacher

We will add to this class a new procedure called updatesalary to update the salary
data member. The print procedure for Teacher is also modified to print the salary.
The final version of the Teacher class is listed in Appendix C. A following program
tests student and Teacher objects:

program records_test
use Student_class
use Teacher class
! create records
type (Student) :: studentA
type (Teacher) :: teacherA
call new(studentA, 0, 'PAT', 'SMITH')
call new(teacherA,2,'JOHN', '"WHITE',1000)
call addclass (studentA, 'MATH')
call updatesalary (teachera, 2000)
! print records
call print (studenth, .true.)
call print (teacherAh, .false.)
Print *,'NUM FILES=',get num files()
! delete records
call delete (teacherd)
call delete (studentd)
end program records_test °

and produces the following result:

0 : PAT SMITH
-- Enrolled
MATH

JOHN WHITE

-- Salary: 2000
NUM FILES= 2

16

IV. Dynamic Dispatching

A third important concept in C++ which must be modeled is the idea of dynamic
dispatching or run-time polymorphism. In the previous section on inheritance, we
showed how a single method name could respond differently to different objects in an
inheritance hierarchy. Dynamic dispatching allows a single object name to refer to any
member of an inheritance hierarchy and permits a procedure to resolve at run-time
which actual object is being referred to. This ability is useful because it allows one to
write a generic program for a whole class of related objects, yet have the program
behave differently depending on the object being used.

To implement dynamic dispatching in Fortran90, two features must be constructed:
first, a pointer object which can point to any member in an inheritance hierarchy, and
second, a dispatch mechanism (or method lookup) which can select the appropriate
procedure (method) to execute based on the actual class referenced in the pointer
object. In C++ these features are present automatically through the use of virtual
functions. In Fortran90 they will be constructed by implementing a subtypes class.
Although the details of dynamic dispatching are exposed to the writer of this class, they
can be hidden from the procedures which make use of this class, as we will show in
the next section.

A pointer object can be created for our Personnel class by defining a
Personnel subtypes type, as follows:

type Personnel subtypes
type (Student), pointer :: ps
type (Teacher), pointer :: pt
end type Personnel_ subtypes

This type definition contains pointers to all the possible subtypes in the inheritance
hierarchy. We have omitted the Personnel type from this list because it was intended
to be an abstract type without concrete objects. At any given time, we will associate
one of the pointers in this list with an actual object, and the other pointers will be set to
null objects. To illustrate how this works, the following program fragment will create an
object called person of type Personnel subtypes, and then assign a Student
object to person as follows:

type (Student), target :: studentA
type (Personnel subtypes) :: person
call new(studenta, (0, 'PAT', 'SMITH')

! assign student object to subtype object
person%$ps => studentA

! nullify other possibilities
nullify (person%pt)

Fortran90 uses the ‘=> operator to assign pointers to objects, and objects being
pointed at must have the TARGET attribute. Since the internal state of a pointer in
Fortran90 is private, the NULLIFY intrinsic is needed to set it to a null object. This

17

assignment operation can be encapsulated into a procedure as follows:

subroutine assign_student (this, ps)

type (Personnel subtypes), intent (out) :: this
type (Student), target, intent(in) :: ps
this%ps => ps

nullify (this%pt)

end subroutine assign_student

Thus, one can create a student object and assign it to person as follows:

call new(student’, (0, 'PAT', 'SMITH')
call assign_student (person, studentAa)

In a similar fashion one can create an assignment procedure for a Teacher.

The second feature that we must construct is a dispatch mechanism to select the
appropriate procedure to execute. This is done by checking which of the possible
pointers actually points to an object and then passing the associated pointer to the
appropriate procedure. In Fortran90, the ASSOCIATED intrinsic is used for this

purpose as follows:
if (associated(person%ps)) Print *,’We have a Student!’

Thus one can write a print procedure for objects of type Personnel subtypes
which checks which subtype has been associated and executes the appropriate
procedure, as follows:

subroutine print subtype (this)
type (Personnel subtypes), intent (in) :: this
! check if pointer is associated with student type
if (associated(this%ps)) then
call print (this%ps)
! check if pointer is associated with teacher type
elseif (associated(this%pt)) then
call print (this%pt)
endif
end subroutine print subtype

It is possible to overload the assignment operator ('=’) to refer to the assign_student
and assign_teacher procedures, and the name print to refer to print_subtype.
All these features can be combined into a simple Personnel subtypes class, as
follows:

18

module Personnel subtypes_class
! bring Student class into scope
use Student class
! bring Teacher class into scope
use Teacher class
private :: assign_ student, assign teacher, print_subtype
! define Personnel_ subtypes type
type Personnel subtypes
private
type (Student), pointer :: ps
type (Teacher), pointer :: pt
end type Personnel subtypes
interface assignment (=)
module procedure assign student, assign_teacher
end interface
interface print
module procedure print_subtype
end interface
contains '
subroutine assign_student (this, ps)
! assign Student to Personnel subtypes
type (Personnel subtypes), intent (out) :: this
type (Student), target, intent(in) :: ps
this%ps => ps
nullify (this%pt)
end subroutine assign_student
1
subroutine assign teacher (this, pt)
! assign Teacher to Personnel subtypes
type (Personnel subtypes), intent (out) :: this
type (Teacher), target, intent(in) :: pt
nullify (this%ps)
this%pt => pt
end subroutine assign teacher
|
subroutine print subtype (this,printssn)
! Print Personnel subtypes
type (Personnel subtypes), intent (in) :: this
logical, optional, intent (in) :: printssn
if (associated(this%ps)) then
call print (this%ps,printssn)
elseif (associated(this%pt)) then
call print (this%pt,printssn)
endif
end subroutine print subtype
end module Personnel subtypes class

In the following sample program, the object person functions as a pointer to base
class objects which can be assigned either to a Student or a Teacher object and be
passed to the appropriate print procedure :

19

program subtype test
! bring in Personnel subtypes class into scope
use Personnel subtypes class
type (Student), target :: studentA
type (Teacher), target :: teacherA
type (Personnel subtypes) :: person
! initialize student and teacher
call new(studentA, 0, 'PAT', 'SMITH')
call new(teacherA,2, 'JOHN', '"WHITE',1000)
! assign a student to person and print record
person = studentA
call print (person, .true.)
! assign a teacher to person and print record
person = teacherA
call print (person, .false.)
end program subtype test

This program produces the following output:

0 : PAT SMITH

-—- Not Enrolled
JOHN WHITE

-- Salary: 1000

A more complete version of this subtypes class is listed in Appendix D, where a
constructor as well as dynamically dispatched versions of the remaining procedures in
the Personnel hierarchy have been implemented (getssn, addclass, and
updatesalary). The subtypes class emulates the virtual function mechanism in C++.

20

V. Database Application with Dynamic Dispatching

Henderson and Zorn make use of the Personnel class hierarchy to write a
Database class which manages a linked list of Personnel objects. The class data
members for this class contain a pointer to the base class object and a pointer to the
Database object. This is expressed by the following Fortran90 type:

type Database
type (Personnel subtypes) :: file
type (Database), pointer :: next
end type Database

where the Personnel_subtypes component is used instead of the pointer to
Personnel. The Database class contains methods to add, remove, locate and print
records in the database. These methods are written much the same as one would

~ write them in C++, except for the use of Personnel subtypes. Forexample, a
method to add a file to the database looks like:

subroutine add(this, f)
type (Database), target, intent (inout) :: this
type (Personnel subtypes) :: f
type (Database), pointer :: tmp
~ tmp => this
! traverse database
do while (associated (tmp%next))
tmp => tmp%next
enddo
! store record in current location
tmp%file = £
! allocate next location
allocate (tmp%next)
end subroutine add

This procedure traverses the Database pointers until a null next pointer is found, and
then it stores the file record £ in the current location and allocates the next location. In
Fortran90 the ‘%’ syntax is used both for pointer as well as object components,
whereas in C++ the ‘->’ syntax is used for pointers and the ‘.’ for objects. Note that the
Database argument ‘this’ requires a TARGET attribute in Fortran90 to allow it to be
pointed at. To print a database, one traverses it in a similar manner, printing each valid
record. To remove or locate a record from the database, one searches the database
for a particular identifier, then deletes or returns it. For example, the procedure for
returning a record from the database looks like:

21

type (Personnel subtypes) function locate (this, s)
type (Database), target, intent (in) :: this
integer, intent (in) :: s
type (Database), pointer :: tmp
tmp => this
! traverse database
do while (associlated(tmp%next))
! check identifier
if (getssn(tmp%file)==s) then
! return record
locate = tmp%file
return
endif
tmp => tmp%next
enddo
end function locate

The remaining procedures in the Database class are listed in Appendix E. The
following test program will first create a database and add a student and teacher
record to it. Then it will retrieve a student file from the database and add a physics
class, and retrieve a teacher file and update the salary. Finally, it will print the entire
database (without identifiers) and purge it. The C++ version of the test program is
listed in Appendix F.

22

program database test

! bring Database class into scope
use Database_class
implicit none

integer :: i

type (Database), target :: cs

type (Personnel subtypes) :: person
type (Student), pointer :: pstudent
type (Teacher), pointer :: pteacher

! Initialize database
call new(cs)
! Add a student file
allocate (pstudent)
call new(pstudent, 1, 'PAUL', 'JONES"')
person = pstudent
call add(cs,person)
! Add a teacher file
allocate (pteacher)
call new(pteacher,2,'JOHN', '"WHITE',1000)
person = pteacher
call add(cs,person)

! Locate item in the database with ssn = 1
person = locate(cs,1)

! Add a physics class
call addclass(person, '"PHYSICS')

! Locate item in the database with ssn = 2

person = locate (cs, 2)
! Update the salary
call updatesalary (person,2000)
! Print the database
call print (cs)
! Delete each data file from database
do i = 1, get num files()
call remove(cs, i)
enddo
end program database test

The output of this program is:

PAUL JONES

-~ Enrolled
PHYSICS

JOHN WHITE

-- Salary: 2000

23

VI. Muttiple Inheritance, Templates, and Operators

Multiple inheritance in C++ allows one to create composite classes that have the
properties of its base classes. An examplie of such a class might be a
StudentTeacher, which inherits from both Student and Teacher. In Fortran90, one
might implement such a composite class with the following composite type:

type StudentTeacher
type (Student) :: student
type (Teacher) :: teacher
end type StudentTeacher

which includes a component of student and a component of Teacher. This type is
included in a module and the USE operator is used to bring the base classes into
scope.

module StudentTeacher_class

! bring Student_class and Teacher_ class into scope
use Student class
use Teacher class

! define StudentTeacher type

type StudentTeacher
type (Student) :: student
type (Teacher) :: teacher
end type Student
end module StudentTeacher class

One also implements the class member functions in the usual way, by delegating the
operation on the student component of Student Teacher to the Student member
function and similarly for the Teacher component. Notice that the both Student and
Teacher each contain a component of Personnel, which is now multiply defined.
Thus when the print function is invoked, the name of the studentTeacher object
will be printed twice. If the StudentTeacher is really only one person (for example, a
Teaching Assistant at a university), this is not the desired behavior. C++ has the
mechanism of a virtual base class to eliminate duplication of inherited class data
members. In Fortran90, since the base class data members are declared explicitly,
one can create a StudentTeacher consisting of a single Personnel component with
all the additional components which belong to a Student and a Teacher, as follows:

type StudentTeacher

type (Personnel) :: personnel

integer :: nclasses

type (String), dimension (10) :: classes
integer :: salary

end type StudentTeacher

Alternatively, a sStudent Teacher could consist of a single Student component with

24

the additional component which belongs to a Teacher, as follows:

type StudentTeacher
type (Student) :: student
integer :: salary

end type StudentTeacher

Thus emulating multiple inheritance in Fortran90 poses no more difficulty than
implementing single inheritance.

Templates are an important new feature in C++ which allows one to write
procedures in terms of a parametrized type which can be instantiated with multiple
actual types. This allows one to write generic functions that are independent of type.
Fortran90 has no mechanism for templates or parametrized types, and we know of no
effective way to emulate them.

Fortran90 allows only a limited number of operators to be overloaded. Notably
missing are subscript [1 and call operators (). Fortran90 does allow one, however,
to create a generic operator of the form .OP_NAME. which can be used as either a
binary or unary operator. For example, the increment operator

a++
can be implemented as:

.increment.a

in Fortran90, none of these operators can appear on the left hand side of an
assignment.

25

VIl. Conclusions

Fortran90 is able to express many of the important concepts of C++, such as
abstract data types, encapsulation, function overloading, and classes directly.
Concepts such as inheritance are not directly supported, but can be emulated. For
functions in a derived class which are modified, the procedure is similar to what one
would do in C++, except that INTERFACE statements are needed in Fortran90 to allow
procedures in different classes to have the same names. In contrast to C++,
procedures which are not modified must also be created in Fortran90 to delegate the
method to the base class. For classes without virtual functions, this emulation is quite
straightforward and is tedious only if the inheritance hierarchy contains many
unmodified functions. The emulation of dynamic dispatching is more involved and
requires the creation of a subtypes class. This class contains an object which can
point to any member of the inheritance hierarchy and a generic method for each class
member function which can dynamically determine which actual function to execute.
Writing the subtypes class is straightforward, but can be tedious, especially if the
inheritance hierarchy is deep. The details of this class can be encapsulated, however,
so that it can be used by other classes without concern for how dynamic dispatching is
implemented, just as in C++. Implementing multiple inheritance introduces no new
concepts. Templates or parametrized types are not supported in Fortran90, and no
effective way has yet been found to emulate them. The Fortran90 programmer must
provide explicitly many features which are automatically available in C++. This can be
enlightening for a beginner in OOP, but can be tedious for the advanced practitioner.

The C++ language is very powerful, flexible and complex. It is a language which is
constantly evolving with new ideas. It is relatively poor in standard libraries and
intrinsics, although that may improve with the adoption of the Standard Template
Library. Fortran90 is a more conservative, stable language, rich with many intrinsics
useful for scientific programming. Scientific programmers are caught in a bind. They
often do not want to be on the “bleeding edge” of programming languages. Yet they
want to adopt useful, proven programming methods. Does Fortran90 go far enough in
introducing new methodology to Fortran? The answer is a subject of debate and is
dependent on the problem being modeled.

In our own experience in implementing object-oriented plasma simulation codes in
both C++ and Fortran90 [6], we found benefits and drawbacks in each language. In
the C++ version of the codes, we had to create special classes to obtain the use of
self-describing multi-dimensional arrays, which were automatically available in
Fortran90. On the other hand, special subtypes classes had to be created in Fortran90
to emulate dynamic dispatching, which was automatically available in C++. Because
type checking in Fortran90 was more strict, more errors were caught by the compiler
than in C++ and debugging went more quickly. However, one had to write more code.
As expected for a mature language, the Fortran90 environment was very stable and
uniform across platforms. And not surprising for an evolving language, the
environment of C++ varied across vendors and platforms and some new features
(such as templates) were sometimes @oorly implemented? The Fortran90 version of
the code executed about twice as fast as the C++ version.

26

There are many kinds of relationships between classes which can occur in object-
oriented programming [7]. In addition to inheritance (is-a), there are aggregations (is-
part-of, or has-a) and links (is-connected-to, or serves). The relative importance of
these various relationships depends on the problem domain. For problems with many
objects which are almost identical, such as modeling power supplies [8], the resulting
deep inheritance hierarchy would be very tedious to model in Fortran90, although
possible. For problems which are dominated by aggregations and links, such as
plasma simulation, Fortran90 is as expressive as C++.

Acknowledgments:

The research of Viktor K. Decyk was carried out in part at UCLA and was sponsored
by USDOE and NSF. It was also carried out in part at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics and
Space Administration. The research of Charles D. Norton was supported by a
National Research Council Associateship, and that of Boleslaw K. Szymanski was
sponsored under grants CCR-9216053 and CCR-9527151. We would like to thank R.
Henderson and B. Zorn for making their source code available and Chris Myers for
helpful discussions and suggestions about this manuscript.

27

References:

[1] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and William
Lorensen, Object-Oriented Modeling and Design [Prentice-Hall, Englewood Cliffs, NJ,
1991], chapter 16.

[2] Stanley B. Lippman, C++ Primer, [Addison-Wesley, Reading, Massachusetts, 1991].

[3] T. M. R. Eliis, Ivor R. Philips, and Thomas M. Lahey, Fortran 90 Programming,
[Addison-Wesley, Reading, Massachusetts, 1994].

[4] V. K. Decyk, C. D. Norton, and B. K. Szymanski, “Introduction to Object-Oriented
Concepts using Fortran90,” submitted for publication.

[5] R. Henderson and B. Zorn, “A Comparison of Object-Oriented Programming in Four
Modern Languages,” Software-Practice and Experience, Vol. 24, Num. 11, pp. 1077-
1095, Nov. 1994,

[6] C. D. Norton, V. K. Decyk, and B. K. Szymanski, “High Performance Object Oriented
Scientific Programming in Fortran 90,” Proc. Eighth SIAM Conf. on Parallel Processing
for Scientific Computing, Minneapolis, MN, 1997.

[7] Grady Booch, Object-Oriented Analysis and Design [Benjamin/Cummings,
Redwood City, CA, 1994], chapter 3.

[8] John J. Barton and Lee R. Nackman, Scientific and Engineering C++ [Addison
Wesley, Reading, Massachusetts, 1994, chapter 9.

28

Appendix A: Final version of Personnel class

Fortran90 version

module Personnel class
implicit none
private :: init Personnel, term Personnel, print_ Personnel

! Define Personnel type

.

type Personnel

private
integer :: ssn
character, dimension(:), pointer :: firstname, lastname

end type Personnel

Number of database records
integer, save, private :: NUM FILES = 0
interface new

module procedure init_ Personnel

end interface
interface delete

module procedure term Personnel

end interface
interface print

module procedure print Personnel

end interface
contains

Constructor

subroutine init Personnel (this, s, fn, 1n)
type (Personnel), intent (out) :: this
integer, intent (in) :: s
character* (*), intent (in) :: fn, 1ln

this%ssn = s
allocate(this%firstname (len(fn)) ,this%lastname (len(1ln)))
call strcpy(this%firstname, fn)

call strcpy(this%lastname,ln)

NUM FILES = NUM FILES + 1

end subroutine init Personnel

subroutine term Personnel (this)

Destructor

type (Personnel), intent (inout) :: this
deallocate (this%firstname, this%lastname)
NUM FILES = NUM FILES - 1

end subroutine term Personnel

29

subroutine print_Personnel (this,printssn)
type (Personnel), intent (in) :: this
logical, optional, intent (in) :: printssn
if ((present (printssn)).and.printssn) then

Print *,this%ssn,': ',this%firstname,' ', this%lastname
else

Print *, this%$firstname, ' ', this%lastname
endif

end subroutine print_ Personnel

function getssn Personnel (this) result (ssn)
type (Personnel), intent (in) :: this
integer :: ssn

ssn = this%ssn

end function getssn Personnel

integer function get num files()
get_num files = NUM FILES
end function get_num files

subroutine strcpy(s,c)
character, dimension (:), intent (out) :: s
character* (*), intent (in) :: c
integer :: i
do i = 1, max(size(s),len(c))
s(i) = c(i:1)
enddo
end subroutine strcpy
end module Personnel class

30

C++ wversion

// * Kk Kk k k Kk ok ok ok ok ok ok ok ok k ok ok ok ok ok ok ok

// **** personnel.h ***x
// khkkhkkhkkhkhkkkhkkhkkhkkhkhkhkhkkhkkkkkxk

#include <stream.h>

class Personnel {
static int NUM_FILES;
char *firstname, *lastname;
protected:
int ssn;
public:
Personnel (const int s, const char *fn, const char *1n);
~Personnel () ;
virtual void print (const int printssn = 0);
virtual int getssn{();
static int get num files();

};

31

//*****************************

//*'k** personnel.cc * %k % %k Kk k k
//*****************************

#include <stream.h>
#include <string.h>
#include "personnel.h"

// Initialize static class member
// Number of database records
int Personnel::NUM FILES = 0;

// Constructor
Personnel: :Personnel (const int s, const char *fn, const char *1ln)
{

ssn = Sy

firstname new char([strlen(fn)+1];

lastname = new char[strlen(ln)+1];

strcpy (firstname, £fn);

strcpy(lastname, 1ln);

NUM_FILES++;

}

// Destructor
Personnel: : ~Personnel ()

{

delete firstname;
delete lastname;
NUM FILES--;

}

void Personnel::print (const int printssn)

{
if (printssn)
cout << ssn << ": " << firstname << ' ' << lastname << endl;
else
cout << firstname << ' ' << lastname << endl;
}

int Personnel::getssn() { return ssn; }

int Personnel::get num files() { return NUM FILES; }

32

Appendix B: Final version of Student class
Fortran90 version

module Student class
! bring Personnel class into scope
use Personnel class
implicit none
private :: Personnel,init Student,term Student,print_ Student
private :: getssn Personnel, getssn Student
! define String type
type, private :: String
character*l, dimension(:), pointer :: stringptr
end type String
! define Student type
- type Student

private

type (Personnel) :: personnel

integer :: nclasses

type (String), dimension (10) :: classes

end type Student
interface new

module procedure init_Student
end interface
interface delete

module procedure term Student
end interface .
interface print

module procedure print Student
end interface
interface getssn

module procedure getssn Student
end interface
contains

subroutine init_ Student (this, s, fn, 1n)

! Student class constructor

type (Student), intent (out) :: this
integer, intent (in) :: s
character* (*), intent (in) :: fn, 1ln

call new(this%$personnel, s, fn, 1n)
this%nclasses = 0
end subroutine init_Student
!
subroutine term Student (this)
! Student class destructor
type (Student), intent (inout) :: this
integer :: i
call delete(this%personnel)
do i = 1, this%nclasses
deallocate (this%classes (i) $stringptr)
enddo
end subroutine term Student

33

subroutine print Student (this,printssn)

! Print a student file
type (Student), intent (in) :: this
logical, optional, intent (in) :: printssn
integer :: i
call print (this%personnel,printssn)
if (this%nclasses==0) then

Print *,'-- Not Enrolled’
else
Print *,'—-- Enrolled’

do 1 = 1, this%nclasses
write (6, ' (a)',advance='no') this%classes(i)%stringptr
enddo
Print *
endif
end subroutine print Student

integer function getssn_Student (this)
type (Student), intent (in) :: this
getssn_Student = getssn Personnel (this%personnel)
end function getssn_Student
!
subroutine addclass(this,c)
! Add a class to a student file
type (Student), intent (inout) :: this
character* (*), intent (in) :: cC
this%nclasses = this%nclasses + 1
allocate (this%classes(this%nclasses) $stringptr (len(c)))
call strcpy(this%classes(this%nclasses) %$stringptr,c)
end subroutine addclass
end module Student class

34

C++ version

// %k %k Kok %k ok %k vk Kk k ok Kk ke ok ke %k %k ok ok ke ke ke ke

// **** student.h = ***x
// % %k %k %k ¥k ok ok Kk k Kk ok ok ok ok ok ok kkokk ok ok

class Student : public Personnel {

int nclasses;

char *classes[10];
public:

Student (const int ssn, const char *firstname, const char
*lastname) ;

~Student () ;

void print (const int printssn = 0);

void addclass(const char *c);

}:

35

//****************************

//**** student.cc % %k %k ok %k Kk ok ok ok ok
//****************************

#include <stream.h>
#include <string.h>

#include "personnel.h"
#include "student.h"

// Student class constructor
Student: :Student (const int s, const char *fn, const char *1n)
Personnel (s, fn, 1n)
{
nclasses=0;
}

// Student class destructor
Student: : ~Student ()
{
for (int i=0; i<nclasses; ++i) delete classes[i]:;
) .

// Add a class to a student file
void Student::addclass(const char *c)
{

classes|[nclasses] = new char[strlen(c)+1];
strcpy (classes([nclasses], c);
nclasses += 1;

}

// Print a student file
void Student::print (const int printssn)

{
Personnel::print (printssn);

if (nclasses == 0)

cout << "-- Not Enrolled" << endl;
else {

cout << "-- Enrolled:" << endl;

for (int i1=0; i < nclasses; ++1) cout << classes[i];
cout << endl;
}
}

36

Appendix C: Final version of Teacher class
Fortran90 version

module Teacher class
! bring Personnel class into scope
use Personnel class
implicit none
private :: Personnel,init_Teacher,term Teacher,print_ Teacher
private :: getssn Personnel, getssn Teacher
! define Teacher type
type Teacher

private
type (Personnel) :: personnel
integer :: salary

end type Teacher
interface new

module procedure init_Teacher
end interface
interface delete

module procedure term Teacher
end interface
interface print

module procedure print_ Teacher
end interface
interface getssn

module procedure getssn Teacher
end interface
contains

subroutine init Teacher (this, s, fn,1n,sal)

! Teacher constructor

type (Teacher), intent (out) :: this
integer, intent (in) :: s, sal
character* (*), intent (in) :: fn, 1n

call new(this%personnel, s, fn, 1n)
this%salary = sal
end subroutine init Teacher
1
subroutine term Teacher (this)
! Teacher class destructor
type (Teacher), intent (inout) :: this
call delete(this%personnel)
end subroutine term Teacher

subroutine print_ Teacher (this,printssn)

! Print a teacher file
type (Teacher), intent (in) :: this
logical, optional, intent (in) :: printssn
call print (this%personnel,printssn)
Print *, '~-- Salary: ', this%salary
end subroutine print_ Teacher

37

integer function getssn_Teacher(this)

type (Teacher), intent (in) :: this

getssn Teacher = getssn Personnel (this%personnel)
end function getssn Teacher

subroutine updatesalary (this, sal)
type (Teacher), intent (out) :: this
integer, intent (in) :: sal
this%salary = sal
end subroutine updatesalary

end module Teacher class

38

C++ version

// kkhkkhkhkkkhkhkhkhkkhkhkkkhkhkhkhkhkhk Xk kx

// **** teacher.h = ***x
// % %k %k dk ok gk Kk koo ok ok ok gk ok ok ok ke ke ok ok ok ko

class Teacher : public Personnel {
int salary;
public:
Teacher (const int ssn, const char *firstname,
const char *lastname, const int salary);
void print (const int printssn = 0);
void updatesalary(const int sal);
};

//**************************

//**** teacher.cc = ****k%x
//**************************

#include <stream.h>

#include "personnel.h"
#include "teacher.h"

// Teacher constructor

Teacher: :Teacher (const int s, const char *fn, const char* 1ln,
const int sal) : Personnel (s, fn, 1ln)
{

}

salary = sal;

// Print a teacher file
void Teacher::print (const int printssn)

{
Personnel: :print (printssn);
cout << "-- Salary: " << salary << endl;

}

void Teacher::updatesalary(const int sal)

{
}

salary = sal;

39

Appendix D: Final version of Personnel subtypes class

Fortran90 version

module Personnel subtypes class
! bring Student class into scope

use Student_class
! bring Teacher_class into scope

use Teacher class

private :: subtype init, assign_student, assign_teacher
private :: print subtype, getssn subtype, addclass_subtype

private :: updatesalary_ subtype
! define Personnel subtypes type
type Personnel subtypes
private
type (Student), pointer :
type (Teacher), pointer
end type Personnel subtypes
interface new
module procedure subtype init
end interface -
interface assignment (=)
module procedure assign student, assign_ teacher
end interface
interface print
module procedure print subtype
end interface
interface getssn
module procedure getssn subtype
end interface
interface addclass
module procedure addclass, addclass_subtype
end interface
interface updatesalary

ps
pt

oe o0

module procedure updatesalary, updatesalary subtype

end interface

contains
subroutine subtype init (this)

! Initialize Personnel subtypes with null pointers

type (Personnel subtypes), intent (out) :: this
nullify (this%ps)
nullify (this%pt)
end subroutine subtype init

subroutine assign_student (this, ps)

! assign Student to Personnel subtypes
type (Personnel subtypes), intent (out) :: this
type (Student), target, intent(in) :: ps
this%ps => ps
nullify (this%pt)
end subroutine assign_student

40

-

!

!

subroutine assign_teacher (this, pt)

assign Teacher to Personnel _subtypes
type (Personnel_subtypes), intent (out) :: this
type (Teacher), target, intent(in) :: pt
nullify (this%ps)
this%pt => pt
end subroutine assign_teacher

subroutine print subtype (this,printssn)
Print Personnel subtypes
type (Personnel subtypes), intent (in) :: this
logical, optional, intent (in) :: printssn
if (associated(this%ps)) then
call print (this%ps,printssn)
elseif (associated(this%pt)) then
call print (this%pt,printssn)
endif
end subroutine print_ subtype

integer function getssn subtype (this)

type (Personnel subtypes) intent (in) :: this

if (associated(this%ps)) then
getssn_subtype = getssn(this%ps)

elseif (associated(this%pt)) then
getssn_subtype = getssn(this%pt)

endif

end function getssn subtype

subroutine addclass_ subtype (this, c)

Add a class to a student Personnel _subtypes file
type (Personnel subtypes), Intent (inout) :: this
character* (*), intent (in) :: c
if (associated(this%$ps)) call addclass (this%ps,c)
end subroutine addclass subtype

subroutine updatesalary subtype (this,sal)
type (Personnel subtypes), intent (inout) :: this
integer, intent (in) :: sal
if (associated(this%pt)) call updatesalary (this%pt,sal)
end subroutine updatesalary subtype

end module Personnel subtypes class

41

Appendix E: Final version of Database class

Fortran90 version

module Database class

! bring Personnel subEypes_class into scope

use Personngl_subtypes_class
private :: init Database, print Database

! define Database type

!

type Database

private
type (Personnel subtypes) :: file
type (Database), pointer :: next

end type Database
interface new

module procedure init Database

end interface
interface print

module procedure print Database

end interface
contains

Constructor

subroutine init Database (this)
type (Database), intent (out) :: this

nullify pointers

call new(this%file)
nullify (this%next)
end subroutine init Database

subroutine print Database (this)

Print the database

type (Database), target, intent (inout)
type (Database), pointer :: tmp
tmp => this
do while (associated (tmp%next))
call print (tmp%file)
tmp => tmp%next
enddo
end subroutine print Database

subroutine add(this, f)

Add a file to the database

type (Database), target, intent (inout)
type (Personnel subtypes) :: £
type (Database), pointer :: tmp
tmp => this
do while (associated (tmp%next))
tmp => tmp%$next
enddo
tmp%file = £
allocate (tmp%next)
end subroutine add

42

o o
.

this

this

subroutine remove (this, s)
! Remove a file from the database
type (Database), target, intent (inout) :: this
integer, intent (in) :: s
type (Database), pointer :: tmp
tmp => this
do while (associated (tmp%next))
if (getssn(tmp%file)==s) then
tmp%$file = tmp%next%file
tmp%next => tmp%next%next
return
endif
tmp => tmp%next
enddo
Print *, 'Database::remove: file not found’
end subroutine remove

type (Personnel subtypes) function locate(this,s)
! Find a file in the database
type (Database), target, intent (in) :: this
integer, intent (in) :: s
type (Database), pointer :: tmp
tmp => this
do while (associated (tmp%next))
if (getssn(tmp%file)==s) then
locate = tmp%file
return
endif
tmp => tmp%next
enddo
Print *,'Database::locate: file not found’
call new(locate)
end function locate
end module Database_class

43

C++ version

// hhhkhkhkhkkkhkkhkhkhkkhkhkkkhkkhhxkkhkkxxk

// **** database.h = ***xx
// %k %k % Kok gk %k ke k ke ke ke ke ke %k %k %k ke ok ok ok %k

class Database {
‘Personnel *file;
Database *next;
public:
Database () ;
void print();
void add(Personnel *pf);
Personnel *locate(const int ssn);
void remove (const int ssn);

}:

44

//************************

//**** database.cc = ***x
//*******************'k****

#include <stream.h>
#include <string.h>

#include "personnel.h”
#include "database.h"

// Constructor
Database: :Database ()
{
file=NULL;
next=NULL;
}

// Print the database
void Database::print ()

{
Database *tmp=this;

while (tmp->next != NULL) ({
tmp~->file->print () ;
tmp = tmp->next;
}
}

// Add a file to the database
volid Database: :add (Personnel *f)

{
Database *tmp=this;

while (tmp->next != NULL) {
tmp = tmp->next;

}

tmp->file = £;

tmp->next = new Database;

45

// Remove a file from the database
volid Database: :remove (const int s)

{
Database *tmp=this;

while (tmp->next != NULL) ({
if (tmp->file->getssn() == s) {
tmp->file tmp->next->file;
tmp->next tmp->next->next;
return;

}

tmp = tmp->next;
} -
cout << "Database::remove: file not found" << endl;

}

// Find a file in the database
Personnel *Database::locate(const int s)
{

Database *tmp=this;

while (tmp->next != NULL) {

- if (tmp->file->getssn() == s) {

return tmp->file;
}

tmp = tmp->next;

}
cout << "Database::locate: file not found" << endl;

return NULL;

46

Appendix F: Database Application Test Program

C++ version

// % Kk ok Kk Kk ke %k ok ok Kk Kk ok ok ok ok ok vk %k ok vk ok ok ok ke ke ki k ok ke ok

// **** database test.cc kxx*xkx
// **************?***************

#include "personnel.h"
#include "teacher.h"
#include "student.h"
#include "database.h"

main ()

{

Database c¢s;
Personnel *person;
int i;
// Add a student file
cs.add (new Student (1, "PAUL", "JONES")):;

// Add a teacher file
cs.add (new Teacher (2, "JOHN", "WHITE", 1000)):;

// Locate item in the database with ssn =1
person = cs.locate(l):;

// Add a physics class
((Student*) person) ->addclass ("PHYSICS") ;

// Locate item in the database with ssn = 2
person = cs.locate(2);

// Update the salary
((Teacher*)person) ->updatesalary (2000) ;

// Print the database
cs.print () ;

// Delete each data file from database
for (i=0; i < Personnel::get num files(); i++) {
cs.remove (i+1);

}

47

